Note on Super - Halley Method and its Variants

نویسندگان

  • V. Kanwar
  • S. K. Tomar
  • Sukhjit Singh
  • Sanjeev Kumar
چکیده

In this paper, we propose a new cubically convergent family of superHalley method based on power means. Some well-known methods can be regarded as particular cases of the proposed family. New classes of higher (third and fourth) order multipoint iterative methods free from second order derivative are derived by semi-discrete modifications of above-mentioned methods. It is shown that super-Halley method is the only method which produces fourth order multipoint iterative methods. Furthermore, these multipoint methods with cubic convergence have also been extended for finding the multiple zeros of non-linear functions. Numerical examples are also presented to demonstrate the performance of proposed multipoint iterative methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the modified super-Halley method

There are many methods for solving nonlinear algebraic equations. Some of these methods are just rediscovered old ones. In this note we show that the modified super Halley scheme is the same as one of Jarratt’s methods. Published by Elsevier Inc.

متن کامل

On diagonally structured problems in unconstrained optimization using an inexact super Halley method

We consider solving the unconstrained minimization problem using an iterative method derived from the third order Super Halley method. The Super Halley method requires solution of two linear systems of equations. We show a practical implementation using an iterative method to solve the linear systems. This paper introduces an array of arrays (jagged) data structure for storing the second and th...

متن کامل

Halley’s Method as the First Member of an Infinite Family of Cubic Order Rootfinding Methods

For each natural number m ≥ 3, we give a rootfinding method Hm, with cubic order of convergence for simple roots. However, for quadratic polynomials the order of convergence of Hm is m. Each Hm depends on the input, the corresponding function value, as well as the first two derivatives. We shall refer to this family as Halley Family, since H3 is the well-known method of Halley. For all m ≥ 4, t...

متن کامل

A modification of Chebyshev-Halley method free from second derivatives for nonlinear equations

‎In this paper‎, ‎we present a new modification of Chebyshev-Halley‎ ‎method‎, ‎free from second derivatives‎, ‎to solve nonlinear equations‎. ‎The convergence analysis shows that our modification is third-order‎ ‎convergent‎. ‎Every iteration of this method requires one function and‎ ‎two first derivative evaluations‎. ‎So‎, ‎its efficiency index is‎ ‎$3^{1/3}=1.442$ that is better than that o...

متن کامل

On a Convex Acceleration of Newton's Method

In this study, we use a convex acceleration of Newton's method (or super-Halley method) to approximate solutions of nonlinear equations. We provide sufficient convergence conditions for this method in three space settings: real line, complex plane, and Banach space. Several applications of our results are also provided.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012